Un disyuntor, interruptor automático es un aparato capaz de interrumpir o abrir un circuito eléctrico cuando la intensidad de la corriente eléctrica que por él circula excede de un determinado valor, o en el que se ha producido un cortocircuito. Se utilizan para proteger contra cortocircuitos, así como también para proteger contra sobrecargas, corrientes de defecto y tensiones bajas. De esta manera, asumen la protección de equipos eléctricos contra sobrecalentamiento inadmisible. A diferencia de los fusibles, que deben ser reemplazados tras un único uso, el disyuntor puede ser rearmado una vez localizado y reparado el problema que haya causado su disparo o desactivación automática.
Ilustración 1. Disyuntor automático
Fuente: Tomado de https://www.01electronica.com.ar/disyuntor-diferencial-trifasico-4x40-40a-30ma-eaton-moeller-01ELECTRONICA-_922
Los disyuntores se fabrican de diferentes tamaños y características, lo cual hace que sean ampliamente utilizados en viviendas, industrias y comercios.
Características
Los parámetros más importantes que definen un disyuntor son:
Funcionamiento
1. Dispositivo térmico
Presente en los disyuntores térmicos y magnetotérmicos. Está compuesto por un bimetal calibrado por el que circula la corriente que alimenta la carga. Cuando ésta es superior a la intensidad para la que está construido el aparato, se calienta, se va dilatando y provoca que el bimetal se arquee, con lo que se consigue que el interruptor se abra automáticamente. Detecta las fallas por sobrecarga.
Está conformado de un solenoide o electroimán, cuya fuerza de atracción aumenta con la intensidad de la corriente. Los contactos del interruptor se mantienen en contacto eléctrico por medio de un pestillo, y, cuando la corriente supera el rango permitido por el aparato, el solenoide libera el pestillo, separando los contactos por medio de un resorte. Algunos tipos de interruptores incluyen un sistema hidráulico de retardo, sumergiendo el núcleo del solenoide en un tubo relleno con un líquido viscoso.
El núcleo se encuentra sujeto con un resorte que lo mantiene desplazado con respecto al solenoide mientras la corriente circulante se mantenga por debajo del valor nominal del interruptor.
Durante una sobrecarga, el solenoide atrae al núcleo a través del fluido para así cerrar el circuito magnético, aplicando fuerza suficiente como para liberar el pestillo. Este retardo permite breves alzas de corriente más allá del valor nominal del aparato, sin llegar a abrir el circuito, en situaciones como por ejemplo, arranque de motores. Las corrientes de cortocircuito suministran la suficiente fuerza al solenoide para liberar el pestillo independientemente de la posición del núcleo, evitando, de este modo la apertura con retardo. La temperatura ambiente puede afectar en el tiempo de retardo, pero no afecta el rango de corte de un interruptor.
2. Dispositivo magnético
Presente en los disyuntores magnéticos y magnetotérmicos, lo forma una bobina, un núcleo y una parte móvil. La intensidad que alimenta la carga atraviesa dicha bobina, y en el caso de que ésta sea muy superior a la intensidad nominal del aparato, se crea un campo magnético que es capaz de arrastrar a la parte móvil y provocar la apertura del circuito de forma casi instantánea. Detecta las fallas por cortocircuito que pueda haber en el circuito eléctrico.
Bajo condiciones de cortocircuito, circula una corriente muchísimo mayor que la corriente nominal; cuando un contacto eléctrico abre un circuito en donde hay gran flujo de corriente, generalmente se produce un arco eléctrico entre dichos contactos ya abiertos, que permite que la corriente siga circulando. Para evitarlo los interruptores incorporan características para dividir y extinguir el arco eléctrico. En pequeños interruptores se implementa una cámara de extinción del arco, la cual consiste en varias placas metálicas o crestas de material cerámico, que ayudan a bajar la temperatura del arco. El arco es desplazado hasta esta cámara por la influencia de una bobina de soplado magnético. En interruptores de mayor tamaño, como los utilizados en subestaciones eléctricas se usa el vacío, gases inertes como el hexafluoruro de azufre o aceite para hacer más débil el arco.
La capacidad de ruptura o poder de corte de un interruptor es la máxima corriente de cortocircuito que es capaz de interrumpir con éxito sin sufrir daños mayores. Si la corriente de cortocircuito se establece a un valor superior al poder de corte de un interruptor, éste no podrá interrumpirla, y se destruirá.
Los pequeños interruptores pueden ser instalados directamente junto al equipo a proteger, aunque generalmente se disponen en un tablero diseñado para tal fin. Los interruptores de potencia se emplazan en gabinetes o armarios eléctricos, mientras que los de alta tensión se pueden ubicar al aire libre.
Referencias
Carlos V. José. (2012). El interruptor automático. De instrumentación y control.net Recuperado de: http://instrumentacionycontrol.net/el-interruptor-automatico/
http://www.electronica-basica.com/disyuntor-electrico.html
- Calibre o corriente nominal: corriente de trabajo para la cual está diseñado el dispositivo. Existen desde 5 hasta 64 amperios.
- Tensión de trabajo: tensión para la cual está diseñado el disyuntor. Existen monofásicos (110 - 220 V) y trifásicos (300 - 600 V).
- Poder de corte: intensidad máxima que el disyuntor puede interrumpir. Con mayores intensidades se pueden producir fenómenos de arcos eléctricos o la fusión y soldadura de materiales que impedirían la apertura del circuito.
- Poder de cierre: intensidad máxima que puede circular por el dispositivo al momento del cierre sin que éste sufra daños por choque eléctrico.
- Número de polos: número máximo de conductores que se pueden conectar al interruptor automático. Existen de uno, dos, tres y cuatro polos. Los disyuntores más comúnmente utilizados son los que trabajan con corrientes alternas, aunque existen también para corrientes continuas.
Funcionamiento
1. Dispositivo térmico
Presente en los disyuntores térmicos y magnetotérmicos. Está compuesto por un bimetal calibrado por el que circula la corriente que alimenta la carga. Cuando ésta es superior a la intensidad para la que está construido el aparato, se calienta, se va dilatando y provoca que el bimetal se arquee, con lo que se consigue que el interruptor se abra automáticamente. Detecta las fallas por sobrecarga.
Está conformado de un solenoide o electroimán, cuya fuerza de atracción aumenta con la intensidad de la corriente. Los contactos del interruptor se mantienen en contacto eléctrico por medio de un pestillo, y, cuando la corriente supera el rango permitido por el aparato, el solenoide libera el pestillo, separando los contactos por medio de un resorte. Algunos tipos de interruptores incluyen un sistema hidráulico de retardo, sumergiendo el núcleo del solenoide en un tubo relleno con un líquido viscoso.
El núcleo se encuentra sujeto con un resorte que lo mantiene desplazado con respecto al solenoide mientras la corriente circulante se mantenga por debajo del valor nominal del interruptor.
Durante una sobrecarga, el solenoide atrae al núcleo a través del fluido para así cerrar el circuito magnético, aplicando fuerza suficiente como para liberar el pestillo. Este retardo permite breves alzas de corriente más allá del valor nominal del aparato, sin llegar a abrir el circuito, en situaciones como por ejemplo, arranque de motores. Las corrientes de cortocircuito suministran la suficiente fuerza al solenoide para liberar el pestillo independientemente de la posición del núcleo, evitando, de este modo la apertura con retardo. La temperatura ambiente puede afectar en el tiempo de retardo, pero no afecta el rango de corte de un interruptor.
2. Dispositivo magnético
Presente en los disyuntores magnéticos y magnetotérmicos, lo forma una bobina, un núcleo y una parte móvil. La intensidad que alimenta la carga atraviesa dicha bobina, y en el caso de que ésta sea muy superior a la intensidad nominal del aparato, se crea un campo magnético que es capaz de arrastrar a la parte móvil y provocar la apertura del circuito de forma casi instantánea. Detecta las fallas por cortocircuito que pueda haber en el circuito eléctrico.
Bajo condiciones de cortocircuito, circula una corriente muchísimo mayor que la corriente nominal; cuando un contacto eléctrico abre un circuito en donde hay gran flujo de corriente, generalmente se produce un arco eléctrico entre dichos contactos ya abiertos, que permite que la corriente siga circulando. Para evitarlo los interruptores incorporan características para dividir y extinguir el arco eléctrico. En pequeños interruptores se implementa una cámara de extinción del arco, la cual consiste en varias placas metálicas o crestas de material cerámico, que ayudan a bajar la temperatura del arco. El arco es desplazado hasta esta cámara por la influencia de una bobina de soplado magnético. En interruptores de mayor tamaño, como los utilizados en subestaciones eléctricas se usa el vacío, gases inertes como el hexafluoruro de azufre o aceite para hacer más débil el arco.
La capacidad de ruptura o poder de corte de un interruptor es la máxima corriente de cortocircuito que es capaz de interrumpir con éxito sin sufrir daños mayores. Si la corriente de cortocircuito se establece a un valor superior al poder de corte de un interruptor, éste no podrá interrumpirla, y se destruirá.
Los pequeños interruptores pueden ser instalados directamente junto al equipo a proteger, aunque generalmente se disponen en un tablero diseñado para tal fin. Los interruptores de potencia se emplazan en gabinetes o armarios eléctricos, mientras que los de alta tensión se pueden ubicar al aire libre.
Tipos
Los tipos más habituales de disyuntores son:
1. Disyuntor termomagnético
Los interruptores automáticos protectores de motor, también llamados interruptores termomagnéticos, son dispositivos destinados para la maniobra, protección y seccionamiento de circuitos con cargas motrices primordialmente. Protegen simultáneamente estos motores contra la destrucción por arranque bloqueado, sobrecarga, cortocircuito y avería de un conductor externo en redes trifásicas.
Ilustración 2. Simbología del Interruptor
termomagnético
Según la función de aplicación, sus vías de corriente se equipan con disparadores o relés. Los disparadores forman parte del interruptor. Los relés y aparatos de disparo por termistores actúan, por el contrario, eléctricamente a través de un disparador de mínima tensión o bobina de apertura por tensión sobre el mecanismo del interruptor. La tabla 1, presenta un resumen de los disparadores y relés para interruptores automáticos
Funcionamiento
Al circular la corriente por el electroimán, crea una fuerza que, mediante un dispositivo mecánico adecuado (M), tiende a abrir el contacto C, pero sólo podrá abrirlo si la intensidad I que circula por la carga sobrepasa el límite de intervención fijado.
Este nivel de intervención suele estar comprendido entre tres y veinte veces (según la letra B, C, D, etc.) la intensidad nominal (la intensidad de diseño del interruptor magnetotérmico) y su actuación es de aproximadamente unas 25 milésimas de segundo, lo cual lo hace muy seguro por su velocidad de reacción.
Esta es la parte destinada a la protección frente a los cortocircuitos, donde se produce un aumento muy rápido y elevado de corriente.
La otra parte está constituida por una lámina bimetálica (representada en rojo) que, al calentarse por encima de un determinado límite, sufre una deformación y pasa a la posición señalada en línea de trazos lo que, mediante el correspondiente dispositivo mecánico (M), provoca la apertura del contacto C.
Esta parte es la encargada de proteger de corrientes que, aunque son superiores a las permitidas por la instalación, no llegan al nivel de intervención del dispositivo magnético. Esta situación es típica de una sobrecarga, donde el consumo va aumentando conforme se van conectando aparatos.
Ambos dispositivos se complementan en su acción de protección, el magnético para los cortocircuitos y el térmico para las sobrecargas. Además de esta desconexión automática, el aparato está provisto de una palanca que permite la desconexión manual de la corriente y el rearme del dispositivo automático cuando se ha producido una desconexión. No obstante, este rearme no es posible si persisten las condiciones de sobrecarga o cortocircuito.
Ilustración 3. Partes del Interruptor termomagnético
Fuente: Tomado de http://juanfrnakruizmitteenn.blogspot.mx/2013/10/interruptor-termomagnetico.html
Incluso volvería a saltar, aunque la palanca estuviese sujeta con el dedo, ya que utiliza un mecanismo independiente para desconectar la corriente y bajar la palanca.
2. Disyuntor magnético
Un disyuntor magnético es un interruptor automático que utiliza un electroimán para interrumpir la corriente cuando se da un cortocircuito (no una sobrecarga). En funcionamiento normal, la corriente pasa por la bobina del electroimán creando un campo magnético débil. Si la intensidad es mayor de un determinado valor, el campo magnético creado es suficientemente fuerte como para poner en funcionamiento un dispositivo mecánico que interrumpe la corriente eléctrica. El valor de esta corriente suele ser entre tres y veinte veces mayor que la corriente nominal, protegiendo al circuito de cortocircuitos.
Ilustración 4. Disyuntor magnético
Fuente: Tomado de http://www.electrical-relay.es/45-circuit-breaker-1.html
Se suelen usar para proteger motores con arrancadores cuando estos últimos disponen de protección térmica integrada (la protección térmica es la encargada de interrumpir la corriente en condiciones de sobrecarga).
3. Guardamotor
Un guardamotor es un interruptor magnetotérmico, especialmente diseñado para la protección de motores eléctricos. Este diseño especial proporciona al dispositivo una curva de disparo que lo hace más robusto frente a las sobreintensidades transitorias típicas de los arranques de los motores. El disparo magnético es equivalente al de otros interruptores automáticos pero el disparo térmico se produce con una intensidad y tiempo mayores. Su curva característica se denomina D o K.
Las características principales de los guardamotores, al igual que de otros interruptores automáticos magnetotérmicos, son la capacidad de ruptura, la intensidad nominal o calibre y la curva de disparo. Proporciona protección frente a sobrecargas del motor y cortocircuitos, así como, en algunos casos, frente a falta de fase.
Pero contrariamente a lo que ocurre con los pequeños interruptores automáticos magnetotérmicos, los guardamotores son regulables; resultado de lo cual se dispone en una sola unidad de las funciones que de otra manera exigirían por ejemplo la instalación de al menos tres unidades a saber: interruptor, contactor y rele térmico.
Ilustración 5. Guardamotor
Fuente: Tomado de http://old.weg.net/aw/Productos-y-Servicios/Control-y-Proteccion/Arrancadores-y-Proteccion-de-Motores/Guardamotor
Referencias
Carlos V. José. (2012). El interruptor automático. De instrumentación y control.net Recuperado de: http://instrumentacionycontrol.net/el-interruptor-automatico/
http://www.electronica-basica.com/disyuntor-electrico.html
https://www.acomee.com.mx/INTERRUPTOR%20TERMOMAGNETICO.pdf
No hay comentarios.:
Publicar un comentario